Our Water Supply
Chiriaco Summit Water District’s Source of Water
The water supply for Chiriaco Summit Water District comes from the Colorado River Aqueduct (CRA).
The Colorado River Aqueduct, or CRA, is a 242 mi (389 km) water conveyance in Southern California in the United States, operated by the Metropolitan Water District of Southern California (MWD). The aqueduct impounds water from the Colorado River at Lake Havasu on the California-Arizona border west across the Mojave and Colorado deserts to the east side of the Santa Ana Mountains. It is one of the primary sources of drinking water for Southern California.
Originally conceived by William Mulholland and designed by Chief Engineer Frank E. Weymouth of the MWD, it was the largest public works project in southern California during the Great Depression. The project employed 30,000 people over an eight-year period and as many as 10,000 at one time.
The system is composed of two reservoirs, five pumping stations, 63 mi (101 km) of canals, 92 mi (148 km) of tunnels, and 84 mi (135 km) of buried conduit and siphons. Average annual throughput is 1,200,000 acre·ft (1.5 km3).
The Colorado River Aqueduct begins at Parker Dam on the Colorado River. There, the water is pumped up the Whipple Mountains where the water emerges and begins flowing through 60 mi (97 km) of siphons and open canals on the southern Mojave Desert. At Iron Mountain, the water is again lifted, 144 ft (44 m). the aqueduct then turns southwest towards the Eagle Mountains. There the water is lifted two more times, first by 438 ft (134 m) to an elevation of more than 1,400 ft (430 m), then by 441 ft (134 m) to an elevation of 1,800 ft (550 m) above sea level. The CRA then runs through the deserts of the Coachella Valley and through the San Gorgonio Pass. Near Cabazon, the aqueduct begins to run underground until it enters the San Jacinto Tunnel at the base of the San Jacinto Mountains. On the other side of the mountains the aqueduct continues to run underground until it reaches the terminus at Lake Mathews. From there, 156 mi (251 km) of distribution lines, along with eight more tunnels, delivers water to member cities. Some of the water is siphoned off in San Jacinto via the San Diego canal, part of the San Diego Aqueduct that delivers water to San Diego County.
Background and construction
As the Los Angeles area grew in the early 1900s, Mulholland and others began looking for new sources of water. Eventually, Los Angeles laid claim to the waters of the Owens Valley, east of the Sierra Nevada, and in 1913 completed a 240-mile (390 km) aqueduct to deliver its waters to the burgeoning city. By 1923, Mulholland and his compatriots were looking east to an even larger water supply, the Colorado River. The plan was to dam the Colorado River and carry its waters across hundreds of miles of mountains and deserts. In 1924 the first steps were taken to create a metropolitan water district, made up of various cities throughout southern California. The Metropolitan Water District (“Met”) was incorporated on December 6, 1928, and in 1929 took over where Los Angeles had left off, planning for a Colorado River aqueduct.
The MWD considered eight routes for the aqueduct. In 1931 the MWD board of directors chose the Parker route which would require the building of the Parker Dam. The Parker route was chosen because it was seen as the safest and most economical. A $220 million bond was approved on September 29, 1931. Work began in January 1933 near Thousand Palms, and in 1934 the United States Bureau of Reclamation began work on the Parker Dam. Construction of the aqueduct was finished in 1935. Water first flowed in the aqueduct on January 7, 1939.
The CRA contributed to urban growth (even sprawl) in the south coast region. Although the CRA brought “too much, too expensive” water in its early years of operation, subsidies (via property taxes) and expansion of MWD’s service area brought reduced prices and expanded demand. (Holding supply constant, that meant that the quantity demanded rose to meet supplies.) On subsidies and sprawl, note that it was not until 1954 that Met’s revenue from selling water exceed the cost of delivering it; it was not until 1973 that revenue from sales exceeded revenue from taxes. Since about 80 percent of Met’s costs are fixed, revenue needs to cover far more than operating expenses if it is going to pay for all costs.
In 1955, the aqueduct was recognized by the American Society of Civil Engineers (ASCE) as one of the “Seven Engineering Wonders of American Engineering”.
In 1986, Metropolitan Water District and Caltrans entered into an agreement for sale of water to benefit the traveling public near Chiriaco Summit. Caltrans subsequently entered into an agreement with the owners of the motorist services facility. In 2002, Metropolitan entered into the existing water sale contract with Caltrans and Chiriaco, a county water district formed in 2000. Caltrans was willing to assist Chiriaco in obtaining water for services at Chiriaco Summit because of the location and service available to the traveling public. (more info).